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1 Introduction and Motivation

The data fueling today’s production machine learning (ML) models, which typically comes
from a myriad of sensors or real-time user click streams, is continuously evolving. Real-
world training datasets are inherently dynamic, as samples get added or removed over time.
To maintain high accuracy and adjust to data distribution shifts, models deployed in the
wild need to incorporate new data during training [Shankar et al. (2022); Huyen (2022)].
While models are typically (re)trained at simple time-based or data volume-based inter-
vals, selecting which data to train on is an active area of ML research. To reduce to cost
of ML training, researchers are exploring how to optimally reduce the number of samples
using various strategies, such as continual learning [Prabhu et al. (2020)], importance sam-
pling [Katharopoulos and Fleuret (2018)], or submodularity [Ramalingam et al. (2021)].

Deploying data selection methods in large-scale and dynamic environments is challeng-
ing, since data ingestion is a common bottleneck in ML training [Murray et al. (2021);
Zhao et al. (2022)]. The selection algorithm itself has a runtime overhead. However, even
assuming no cost for the selection algorithm, just fetching the data to ingest at sample-level
granularity can significantly slow down data loading and bottleneck training, compared
to sequentially reading input data. We are not aware of any training platform that sup-
ports sample-level data selection decisions, even for training on static datasets. We present
MODYN, an open-source, extensible, modular, and easy-to-use platform for model training
that addresses this gap. MODYN orchestrates continuous running pipelines over their life-
cycle. We design MODYN to enable sample-level data selection and support basic triggering
policies, while alleviating users from having to optimize the system infrastructure. MODYN
separates the concerns of pipeline execution into several components. It uses several layers
of partitioning and parallelization across components to avoid data stalls.!

2 System Design and Evaluation

Figure 1 shows MODYN’s system architecture. MODYN takes data from a data generating
source (e.g., a sensor or click stream) as input. MODYN outputs a stream of trained ML

1. A full preprint on MODYN is available at https://arxiv.org/abs/2312.06254.
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Figure 1: MODYN’s system architecture.

models that can be deployed for serving. To balance performance and ease-of-use, MODYN
components are either written in C++, purely in Python, or Python with C++ extensions.
Having a clean, extendable Python interface allows ML researchers to implement their
techniques without worrying about systems aspects. The codebase, totaling over 30,000
lines of Python and 5,000 lines of C++, is publicly accessible? and actively being developed.

Overview of data flow. (0) The user submits a training pipeline definition via
MoDYN’s CLI to the supervisor server, which implements the triggering policy and or-
chestrates the training pipelines. MODYN stores data samples streaming in from external
sources in its storage component, which assigns a unique key to each sample. (1) The data
storage component informs the supervisor server about new samples by their key. The
supervisor checks whether any data point in the incoming batch causes a trigger and (2) for-
wards potential triggers and the sample keys to the selector, which implements the data
selection policy. (3) Upon trigger, the supervisor contacts the trainer server to start a train-
ing process. (4) The trainer requests the trigger training set (keys and weights to train on)
from the selector. (5) Then, it loads the actual data from the storage and, depending on the
retraining policy, also the previous model from the model storage. The trainer then runs
a training according to the configuration. (6) The trained model, which is the output of
MODYN, is then stored in the model storage component. (7) Afterwards, in an experimental
setup, the evaluator component evaluates the newly trained model.

Evaluation. We compare MODYN to local training in order to measure the overhead
of a well-performing configuration. We train a DLRM model since this is memory-bound
and stresses MODYN’s infrastructure the most. In order to compare, we use MODYN’s
training loop and replace its network data loader with a custom local dataset reading data
directly from 90 binary files on local NVMe containing 30 M samples. Note that this not
only removes the communication and gRPC overhead, but also removes the sample-level
data selection. MODYN loads each sample individually by key, but the baseline loads entire
files and emits all samples in them. MODYN reaches 92 %, 87.2 %, 82.6 %, and 87 % of local
performance for 1, 4, 8, and 16 workers, respectively.

Research outlook. MODYN enables the data-centric ML, community to easily explore
retraining and data selection policies at scale, as it optimizes the infrastructure under the
hood for high-throughput sample-level data selection. It offers a platform to validate their
novel selection policies under continuous training scenarios experiencing distribution shift.

2. Available at https://github.com/eth-easl/modyn
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We hope to foster cross-community collaboration and development in an open-source pro-
cess.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are
many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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